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Abstract 
 
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional 
regulation in various cellular processes including cell proliferation and differentiation, but 
the APA heterogeneity among single cells remains largely unknown. Single-cell RNA 
sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the 
transcription level. Yet, most scRNA-seq data have not been analyzed in an “APA-
aware” manner. Here, we introduce scDaPars (Dynamic Analysis of Alternative 
PolyAdenylation from Single-cell RNA-seq), a bioinformatics algorithm to accurately 
quantify APA events at both single-cell and single-gene resolution using either 3’ end 
(10x Chromium) or full-length (Smart-seq2) scRNA-seq data. Validations in both real 
and simulated data indicate that scDaPars can robustly recover missing APA events 
caused by the low amounts of mRNA sequenced in single cells. When applied to cancer 
and human endoderm differentiation data, scDaPars not only revealed cell-type-specific 
APA regulation but also identified cell subpopulations that are otherwise invisible to 
conventional gene expression analysis. Thus, scDaPars will enable us to understand 
cellular heterogeneity at the post-transcriptional APA level. 
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Introduction 
 
Alternative polyadenylation (APA) is a major mechanism of post-transcriptional 
regulation under diverse physiological and pathological conditions (Elkon et al. 2013; 
Tian and Manley 2017). The process of polyadenylation involves endonucleolytic 
cleavage of the nascent RNA followed by synthesis of a poly(A) tail on the 3’ terminus 
(Tian and Manley 2017). By using different polyadenylation sites (poly(A) sites), which 
are defined by flanking RNA sequence motifs, APA can generate mRNA isoforms with 
various 3’-untranslated regions (3’ UTRs) in the majority of human genes (Derti et al. 
2012; Tian and Manley 2017). While APA in most cases does not alter the protein-
coding regions in those mRNA isoforms, it disrupts important cis-regulatory elements 
located in the 3’ UTRs, including adenylate-uridylate-rich elements (ARE) and binding 
sites of miRNAs and RNA-binding proteins, resulting in altered mRNA stability, 
localization and translation efficiency (Garneau et al. 2007; An et al. 2008; Hoffman et al. 
2016).  
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High-throughput sequencing technologies have revolutionized our understanding 
of APA over the last decade, illustrating both the pervasiveness of dynamic APA events 
and complexity of the APA regulatory processes. Recently, multiple studies have shed 
light on the global regulation of APA in response to changes in cell proliferation and cell 
differentiation in human diseases including cancer (Tian and Manley 2017; Gruber and 
Zavolan 2019). Both proliferating cells and transformed cells often express a multitude 
of alternative mRNA isoforms with shortened 3’ UTRs through APA (Sandberg et al. 
2008), leading to the activation of several proto-oncogenes such as CCND1, by 
escaping miRNA-mediated repression (Mayr and Bartel 2009). On the other hand, 3’ 
UTR lengthening is more prevalent in cell differentiation (Ji et al. 2009; Ji and Tian 
2009). For example, progressive 3’ UTR lengthening is observed during mouse 
embryonic development (Ji et al. 2009), and the generation of induced pluripotent stem 
cells (iPSCs) (dedifferentiation) is accompanied by global 3’ UTR shortening (Ji and 
Tian 2009). Besides regulating cognate transcripts in cis, APA-induced 3’ UTR changes 
can also disrupt competing endogenous RNA (ceRNA) regulation in trans, thus 
repressing several crucial tumor suppressors such as PTEN in breast cancer (Park et al. 
2018). Although these observations imply a possible cell-state- or cell-type-dependent 
manner of APA regulation, the variability of APA among individual cells and the utility of 
APA in revealing novel cell subpopulations remain largely unknown.  
 Single-cell RNA sequencing (scRNA-seq) has become one of the most widely 
used technologies in biomedical research by providing an unprecedented opportunity to 
quantify the abundance of diverse transcript isoforms among individual cells (Shapiro et 
al. 2013; Saliba et al. 2014). However, methods to quantify relative APA usage across 
single cells remain underdeveloped. Recently, Velten et al. (Velten et al. 2015) 
developed an experimental protocol BATseq to quantify various 3’-UTR isoforms at the 
single-cell resolution. By integrating the standard scRNA-seq protocol and the 3’ 
enriched bulk RNA-seq protocol, Velten et al. found that cell types can be well 
separated based exclusively on their 3’-UTR isoform usage, indicating that APA is a 
molecular feature intrinsic to cell states (Velten et al. 2015). While a compelling method, 
BATseq is hampered by its low sensitivity (~5%) and high procedural complexity (Chen 
et al. 2017), thereby not being widely adopted in practice. In contrast, standard scRNA-
seq data is widely available, yet most of the scRNA-seq data has not been analyzed in 
an “APA-aware” manner. Since scRNA-seq only captures a small fraction (typically 5%-
15%) of the total mRNAs in each cell (Stegle et al. 2015), it can falsely quantify genes, 
especially lowly expressed ones, as unexpressed; this phenomenon is termed as 
“dropout”. Existing bulk RNA-seq based APA methods such as DaPars (Xia et al. 2014) 
cannot overcome this vexing challenge when applied directly to scRNA-seq data, as 
they would lead to a high degree of sparsity in the resulting APA profiles. To address 
this sparsity, recently published computational approaches such as scDAPA (Ye et al. 
2020) and scAPA (Shulman and Elkon 2019) extract and combine reads from cells 
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aggregated based on pre-defined cell types.  Alternatively, another study (Kim et al. 
2019) aggregates individual genes into “meta-genes” with reference to common 
functionality. While these strategies cope with the problem of sparsity to some extent, 
they fail to retain the single-cell or single-gene resolution (Supplemental Table S1).  

To fill this knowledge gap, we developed scDaPars (Dynamic analysis of 
Alternative PolyAdenylation from scRNA-Seq), a bioinformatics algorithm for 
quantifying and recovering APA usage at the single-cell and single-gene resolution 
using standard scRNA-seq data. Since APA is reported to be regulated in a cell-state- 
or cell-type-specific manner, scDaPars employs a regression model that enables 
sharing of APA information across related cells to tackle the sparsity, achieving 
considerable robustness when applied to noisy scRNA-seq data. In addition, unlike 
scDAPA and scAPA which are only applicable to 3’ end scRNA-seq datasets, scDaPars 
can be applied to both 3’ end and full-length scRNA-seq data. To the best of our 
knowledge, scDaPars is the first single-cell- and single-gene- level APA quantification 
method for analyzing standard scRNA-seq data.  

 

Results 
 
Overview of the scDaPars algorithm 
Figure 1 presents a schematic illustration of the scDaPars algorithm (see “Methods” for 
detailed definition and computational procedures). Given a scRNA-seq dataset, 
scDaPars first calculates raw relative APA usage, measured by the percentage of distal 
poly(A) site usage index (PDUI), based on the two-Poly(A)-site model introduced in 
DaPars (Xia et al. 2014). scDaPars takes scRNA-seq genome coverage data as input 
and forms a linear regression model to jointly infer the exact location of proximal poly(A) 
sites by minimizing the deviation between the observed read density and the expected 
read density in all single cells. The relative APA usage is then quantified as the 
proportion of the estimated abundances of transcripts with distal poly(A) sites (longer 3’ 
UTRs) out of all transcripts (longer and shorter 3’ UTRs), and therefore, genes favoring 
distal poly(A) site usage (long 3′ UTRs) will have PDUI values near 1, whereas genes 
favoring proximal poly(A) site usage (short 3′ UTRs) will have PDUI values near 0. This 
step (step (I)) will generate a PDUI matrix with rows representing genes and columns 
representing single cells. Of note, the raw PDUI values can only be estimated for genes 
with sufficient read coverages (default coverage of 5 reads per base), which 
automatically separates genes into robust genes (genes unaffected by dropout events) 
and dropout genes for further analysis. Due to the intrinsically low coverage of scRNA-
seq data (Brennecke et al. 2013), the resulting PDUI matrix from step (I)  is overly 
sparse with widespread missing data. To further recover the complete PDUI matrix 
independent of gene expression, we develop a new imputation method by sharing APA 
information across different cells. For a given cell, scDaPars begins by constructing a 
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nearest neighbor graph based on the sparse PDUI matrix generated in step (I) (Fig.1) to 
identify a pool of candidate neighboring cells that have similar APA profiles (step (II)). 
Finally, scDaPars uses a non-negative least square (NNLS) regression model to refine 
neighboring cells based on robust genes and then borrow APA information in these 
neighboring cells to impute PDUIs of dropout genes in each cell (step (III)).  

 
Evaluation of the Accuracy and Robustness of scDaPars 
To quantitatively evaluate the accuracy of imputed APA usage by scDaPars, we used 
384 scRNA-seq libraries of individual human peripheral blood cells (PBMCs) sequenced 
by Smart-seq2 (Picelli et al. 2013) protocol and a matched bulk RNA-seq library from a 
benchmark study by Ding et al. (Ding et al. 2020). Since we can estimate poly(A) sites 
and quantify differential poly(A) sites usage with high sensitivity and specificity in bulk 
RNA-seq datasets (Xia et al. 2014), we treated the results from the matched bulk 
sample as pseudo-gold standard for the following evaluation.  
 First, we showed that scDaPars reliably identified the location of proximal poly(A) 
sites in single cells. We found that ~84% of poly(A) sites predicted from scRNA-seq 
data are within 100bp of those predicted in bulk, whereas only ~44% of randomly 
selected sites from 3’ UTR regions are within 100bp of bulk predictions (Fig.2A). We 
found that ~66.2% of poly(A) sites predicted from scRNA-seq data also overlapped with 
annotated poly(A) sites complied from RefSeq, Ensembl, UCSC gene models and 
poly(A)_DB (Wang et al. 2017) within 100bp, and this overlap showed an approximately 
fivefold enrichment compared with random sites (Fig.2B). In addition, canonical poly(A) 
signal (PAS) AATAAA was successfully identified by de novo motif analysis (Bailey 
2011) within the upstream (-100bp) sequence of single-cell predicted poly(A) sites with 
a p-value (P = 1.2�10-44) similar to that of bulk samples (P = 5.4�10-48) (Fig.2C, 
Supplemental Fig.S1), supporting the validity of scDaPars’s prediction of poly(A) sites. 

Next, we showed that scDaPars was able to recover APA usage for genes 
affected by dropouts in scRNA-seq data. APA is found to be uniquely regulated in 
distinct immune cell types in PBMCs (Kim et al. 2019). Yet the median Pearson’s 
correlation between APA (PDUI values) of single-cell pairs in the same B cell cluster is 
only 0.46 when PDUI values were calculated by DaPars (our previous method for bulk 
RNA-seq) due to dropout effects (Fig. 2D). In contrast, scDaPars successfully 
recovered PDUI values for most of the affected dropout genes (Supplemental Fig.S2) 
and increased the median cell-cell correlation by a large margin (0.79) (P < 2.2�10-16) 
(Fig.2D). We further compared the average APA usage of all single cells with the bulk 
results. The Pearson’s correlation between the average PDUI values of single cells and 
those of the bulk increased from 0.74 to 0.82 after scDaPars imputation (Fig.2E). 
Notably, even though the correlation increase was not large, the regression slope 
increased significantly from 0.59 (DaPars) to 0.8 (scDaPars) (P = 4.89�10-26), indicating 
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APA usage quantified by scDaPars better represents the linear relationship between the 
average of single cells and the corresponding bulk. 
 Finally, we used a simulation study to illustrate scDaPars’s ability to identify 
dynamic APA events (see “Methods”) between two cell types. We created a synthetic 
PDUI matrix of naive and activated CD4 T cells based on bulk RNA-seq data from the 
DICE project (Schmiedel et al. 2018) (see “Methods”). The naive and activated CD4 T 
cells are clearly distinguishable using the reference APA profiles estimated from bulk 
samples (Fig.3A). Additionally, the reference data showed a strong inclination of 3’ UTR 
shortening in activated CD4 T cells (P = 3.8�10-4) (Fig.3D), in line with previous reports 
that 3’ UTR shortening is widely observed upon activation of T cells (Sandberg et al. 
2008). However, manually introduced dropout events obscured this differential 3’ UTR 
pattern, in which only ~38% of differential APA genes remained, and the two cell types 
became less separated by their APA profiles (Fig.3B, E). After we applied the 
imputation steps of scDaPars, ~79% of differential APA genes are recovered and the 
clear separation of these two cell types was restored (Fig.3C, F). We further examined 
the robustness of scDaPars against varying dropout rates. Even though the accuracy of 
dynamic APA events identified by scDaPars decreased as the dropout rate increased, 
scDaPars could still achieve > 0.75 area under the receiver operating characteristics 
(ROC) curve when the proportion of dropout events was as high as 70% (Supplemental 
Fig.S3).  
 
scDaPars outperforms existing methods by providing single-cell-resolution APA 
quantification applicable to both 3’ end and full-length scRNA-seq data 
Several bioinformatics tools have been developed to analyze APA usage using scRNA-
seq data (i.e., scDAPA (Ye et al. 2020) and scAPA (Shulman and Elkon 2019)), yet, 
unlike scDaPars, they were not designed to quantify APA usage at the single-cell 
resolution. During the preparation of this manuscript, we noticed another method Sierra 
(Patrick et al. 2020), which detects differential transcript usage in scRNA-seq data, may 
also be used for quantifying dynamic APA events. To illustrate the superiority of 
scDaPars over these existing methods, we applied scDaPars, scAPA and Sierra to a 
benchmark 10x Chromium dataset containing 902 single cells from three lung 
adenocarcinoma cell lines (Tian et al. 2019) (see “Methods”). scDAPA was excluded 
from this study since it identifies APA events by pair-wise comparison without 
quantifying APA usage. scDaPars outperformed both scAPA and Sierra by generating 
clear and compact cell clusters according to annotated cell lines (UMAP (McInnes et al. 
2018) visualization in Supplemental Fig.S4A, B and C). We used silhouette analysis to 
quantitatively assess the resulting clusters. Compared with scAPA and Sierra, 
scDaPars showed higher silhouette coefficients which indicated the clustering results 
from scDaPars are more congruent with the true cell-line labels (Supplemental Fig.S4D, 
E and F). To further benchmark scDaPars in more complex biological systems, we 

 Cold Spring Harbor Laboratory Press on July 17, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


applied scDaPars, scAPA and Sierra to an immune dataset containing 3362 PBMCs 
(Ding et al. 2020) (see “Methods”). Again, the APA usage quantified by scDaPars 
generated compact and accurate immune cell clusters (Fig.4A, D). In contrast, although 
Sierra outperformed scAPA and was able to separate B cell and CD14+ monocytes 
(Fig.4B, C), both Sierra and scAPA failed to accurately distinguish the five immune cell 
types (Fig.4E, F). Besides generating accurate cell clusters, scDaPars also identified 
169 dynamic APA genes (genes with differential poly(A) site usage) among the five 
immune cell types, most of which (96%) were unseen by existing methods. For example, 
scDaPars identified EIF1 as a dynamic APA gene between B cells and CD14+ 
monocytes. Both cluster- and single-cell level coverage plots corroborated that EIF1 
exhibits 3’ UTR lengthening in B cells compared to CD14+ monocytes (Supplemental 
Fig.S5). Yet, EIF1 was not captured by previous methods (i.e., scAPA), indicating the 
advantage of scDaPars. More importantly, scDAPA, scAPA and Sierra rely on peak 
calling using 3’ end enriched reads in 10x Chromium to quantify APA usage and thus 
are not applicable to data generated by full-length sequencing protocols like Smart-seq2 
which do not contain enriched peaks in the 3’ UTR regions (Picelli et al. 2013). 
 
scDaPars revealed intrinsic tumor APA variations and immune cell 
subpopulations in primary breast cancer  
Global-scale coordinated APA events are commonly observed in cancers (Xia et al. 
2014), and APA induced 3’ UTR shortening was shown to be associated with tumor 
aggressiveness and poor survival of cancer patients (Lembo et al. 2012; Xia et al. 2014). 
However, knowledge of APA regulations in cancer has been largely derived from bulk 
RNA-seq studies. Therefore, while global APA variations between tumor and normal 
cells have been well characterized, little is known about the intertumoral APA 
heterogeneity at the single-cell resolution. To illustrate scDaPars’ capacity of 
characterizing single-cell APA variations in cancers, we applied scDaPars to a Smart-
seq2 (Picelli et al. 2013) scRNA-seq dataset containing 563 single cells from 11 breast 
cancer patients (Chung et al. 2017). In consistent with bulk results, 3’ UTRs were 
shortened in tumor cells compared to normal cells (P < 2.2�10-16) (Fig.5A). Even PDUI 
values before scDaPars imputation could separate tumor cells from non-tumor cells with 
effectiveness comparable to that of gene expression values (Supplemental Fig.S6A), 
suggesting an important role of dynamic APA events in breast cancer progression. As 
expected, scDaPars imputed APA profiles showed a better separation between tumor 
and non-tumor groups (Fig.5B, Supplemental Fig.S7). 
 To further elucidate APA variations among cell subgroups, we analyzed APA 
profiles of tumor and non-tumor cells separately. On the one hand, contrary to a 
previous single-cell APA analysis performed on aggregated “meta-genes” in the same 
breast cancer dataset (Chung et al. 2017), which showed that no differences in APA 
were associated with cancer subtypes or patients (Kim et al. 2019), we found that tumor 
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cells were not only separated into patient-specific clusters based on scDaPars-imputed 
APA profiles (Fig.5C), but also further classified into different molecular subtypes 
(Supplemental Fig.S8), showing evidence of both intertumoral and cancer-subtype-
specific APA heterogeneity as well as scDaPars’s advantage over existing method. On 
the other hand, non-tumor cells, which were derived from the same group of patients as 
tumor cells, were clustered mainly according to their cell types (B cells, Myeloid cells 
and T cells) instead of patients (Fig.5D, Supplemental Fig.S6B). This result not only 
reaffirmed that dynamic APA events are cell-type specific characteristics of immune 
cells, but also indicated that the patient-specific APA profiles observed in tumor cells 
were unlikely due to batch effects in patient samples but rather reflected true 
intertumoral variations in APA.  

In addition, in consistent with prior knowledge of two B cell subclasses 
(proliferating and naive/memory B cells) in this dataset, we observed that B cells were 
classified into two cell subgroups based on scDaPars-imputed APA profiles (Fig.5E) 
with group 2 B cells showed global 3’ UTR shortening compared with group 1 B cells (P 
= 2�10-3) (Fig.5F). We found that most B cell proliferation signature genes from the 
literature (Chung et al. 2017)  were upregulated in group 2 B cells compared to group 1 
B cells (Supplemental Fig.S9, Supplemental Table S2), suggesting that group 2 B cells 
may represent proliferating B cells. Indeed, the proliferating and naive/memory B cells 
determined by the expression of B cell proliferating marker genes are highly congruent 
with scDaPars derived cell subgroups (Supplemental Fig.S10A, B). These results are 
also in line with previous reports that proliferating cells (i.e., group 2 cells) express more 
isoforms with shortened 3’ UTRs through APA (Sandberg et al. 2008). However, 
expression analysis of all genes failed to identify these B cell subgroups (Supplemental 
Fig.S10C), revealing the potential benefits of APA analysis in delineating cell 
subpopulations. In summary, scDaPars improves the characterization of APA variations 
and cell subpopulations in single cells.  

 
scDaPars enables identification of novel cell subpopulations invisible to 
conventional gene expression analysis in endoderm differentiation 
As APA patterns appear to be globally regulated in cell differentiation (Ji et al. 2009; 
Tian and Manley 2017) (i.e., decreased proximal poly(A) site usage in more 
differentiated states of embryonic development), we hypothesized that they could 
provide a new aspect to identify cell subpopulations during differentiation. To test this 
hypothesis, we applied scDaPars to a time-course Smart-seq2 (Picelli et al. 2013) 
scRNA-seq dataset containing 758 cells sequenced at 0, 12, 24, 36, 72 and 96 h of 
differentiation during human definitive endoderm (DE) emergence (Chu et al. 2016). 
scDaPars revealed clear and accurate cell clusters from each time point along the 
differentiation process (Fig.6A). Dimension 2 of the UMAP projection of raw PDUI 
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values reconstructed single-cell orders matching the true differentiation time points, 
reflecting the global APA dynamics during cell differentiation (Supplemental Fig.S11).  
 Next, we investigated whether APA could help delineate novel cell 
subpopulations invisible to gene expression analysis alone. Imputation based on 
observed gene expression has been shown to enhance the identification of cell 
subpopulations (Li and Li 2018). Therefore, to ensure APA is providing additional 
information beyond expression, we first recovered plausible single-cell gene expression 
data using scImpute (Li and Li 2018), a state-of-the-art gene expression imputation 
method. Notably, although the imputed gene expression profile outputs more compact 
clusters than the raw expression, single cells collected from 72 and 96 h of 
differentiation were still largely overlapped (Supplemental Fig.S12). To characterize 
additional cellular heterogeneity, we integrated APA information with imputed gene 
expression using similarity network fusion (SNF) (Wang et al. 2014). By creating and 
converging separate similarity networks for APA and gene expression, SNF reduced 
noisy inter-cluster similarities among cells in 12 and 24 h of differentiation and 
enhanced intra-cluster similarities observed in one or both similarity networks (Fig.6B). 
We then quantitatively compared the clustering results by using spectral clustering 
algorithm (Ng et al. 2002) on different similarity networks with the number of clusters 
� � 6. The clustering results are evaluated by normalized mutual information (NMI) 
(Witten et al. 2016) where ��� � 1 indicates a perfect match between the clustering 
results and the known differentiation time points. While gene expression imputation 
increased NMI from 0.76 to 0.85, integration of APA usages with imputed gene 
expression further increased NMI from 0.85 to 0.89, suggesting the benefits of adding 
APA information.  
 Besides unifying the clustering results of APA and gene expression, the fused 
similarity network also revealed novel and potentially meaningful subpopulations. For 
example, cells at 96 h of differentiation were divided into two previously unidentified 
subpopulations (Fig.6B). Through analyzing APA and gene expression between the two 
subpopulations, we found that APA usage alone can accurately separate the two 
subpopulations (Fig.6C, Supplemental Fig.S13) and subpopulation 2, which was more 
distinct from cells in 72 h of differentiation than subpopulation 1, exhibited global 3’ UTR 
lengthening compared to subpopulation 1 (P = 3.64�10-8) (Fig.6D); whereas the 
imputed gene expression profile alone failed to distinguish the two subpopulations 
(Fig.6C). The APA profile quantified by DaPars also failed to identify the 2 subgroups 
(Supplemental Fig.S14), indicating the superiority of scDaPars.  

Since subpopulation 2 showed global 3’ UTR lengthening, we hypothesized it 
may represent a more differentiated cell subgroup. To test our hypothesis, we 
performed differential gene expression analysis between subpopulation 1 and 2 using 
DESeq2 (Love et al. 2014). As a result, subpopulation 2 was characterized by higher 
expression of endoderm development marker genes including GATA6, EOMES, and 
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SOX17 (Chu et al. 2016) (Fig.6F, Supplemental Table S3). In addition, the 
transcriptional profile of subpopulation 2 also included significantly upregulated 
endoderm development related genes like LHX1, which is important for renal 
development (Reidy and Rosenblum 2009), and HMGA2, which is required for 
epithelium differentiation during embryonic lung development (Singh et al. 2014), 
suggesting subpopulation 2 has a more differentiated phenotype than subpopulation 1. 
To further elucidate the global biological differences between the two subpopulations, 
we performed gene oncology (GO) analysis (Luo et al. 2009). We found that several 
endoderm development related GO terms were highly enriched in the upregulated 
genes in subpopulation 2 (Fig.6E). Furthermore, using the expression of differential 
APA genes, we were able to separate the two subpopulations (Supplemental Fig.S15), 
indicating that some biologically meaningful subpopulations were masked by overall 
gene expression analysis. Finally, we conducted a trajectory analysis by STREAM 
(Chen et al. 2019) to independently show the validity of the identified subpopulations. 
Using cells at 0 h of differentiation as a natural starting point (root), we found that most 
cells are projected onto the inferred branches according to their corresponding 
differentiation time points (Supplemental Fig.S16A, B), and the derived pseudotime 
progression corroborated that cells in subpopulation 2 are more differentiated than 
those in subpopulation 1 (Fig.6G, Supplemental Fig.S16C). Considered collectively, 
scDaPars calculated APA usage offered an additional layer of information in 
characterizing cellular heterogeneity that was otherwise invisible in gene expression 
analysis.  
 

Discussion 
 
Here, we developed scDaPars, a novel bioinformatics algorithm to de novo identify and 
quantify single-cell dynamic APA events using standard scRNA-seq data. Many 
methods have been developed to measure the relative APA usages in RNA-seq data 
from bulk samples (Xia et al. 2014). However, the widespread dropout events in scRNA-
seq data impede these bulk-sample based methods to quantify APA usage among 
single cells (Figs.2D and 2E). To address this technical challenge in scRNA-seq, 
scDaPars first quantifies raw APA usage based on the two-poly(A)-site model 
introduced in DaPars (Xia et al. 2014). Since APA exhibits a cell-type specific pattern 
(Velten et al. 2015; Kim et al. 2019), scDaPars then clusters cells into different cell 
neighbors based on their calculated raw APA profiles. Next, scDaPars imputes missing 
APA usage by borrowing APA information of the same gene from neighboring cells. 
Benchmarking on both real and simulated data show the accuracy of scDaPars in 
predicting poly(A) sites, the ability in recovering missing APA usages, and the 
robustness in identifying dynamic APA events across different cell types (Fig.2 and 3). 
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 Previously, methods for analyzing APA usage using scRNA-seq data mostly 
address the high technical noise in scRNA-seq by creating pseudo-bulk RNA-seq data 
(i.e. pooled reads from cells that are assigned to the same cell cluster) (Shulman and 
Elkon 2019; Ye et al. 2020). Unlike scDaPars, even though these methods perform on 
scRNA-seq data, they do not quantify APA usage at the single-cell resolution but rather 
measure cell-cluster APA usage, which contradicts the purpose of single-cell 
sequencing (Supplemental Table S1). Additionally, previous methods are confined by 
cell cluster assignments determined by conventional gene expression analysis. In 
contrast, scDaPars quantifies single-cell APA usage independent of gene expression, 
which provides an additional layer of APA information that helps identify hidden cell 
states. (Fig.6C). 
 Finally, unlike existing methods, we expect scDaPars to be widely applicable to 
any scRNA-seq datasets. While the main analysis presented in this paper builds on 
scRNA-seq data generated by low-throughput Smart-seq2 (Picelli et al. 2013) protocol 
and the accuracy of scDaPars decreases as the dropout rate increases (Supplemental 
Fig.S3), scDaPars can also be applied to datasets generated by high-throughput high-
dropout-rate droplet-based methods, e.g. 10x Chromium (Zheng et al. 2017). For 
example, scDaPars successfully revealed cell-type specific APA patterns in 3362 
PBMCs sequenced by 10x Chromium (Ding et al. 2020) (Fig.4A). Together, scDaPars 
provides an additional layer of APA information that helps identify cell subpopulations 
invisible to conventional gene expression analysis. 
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Methods 
 
De novo quantification of dynamic APA events 
scDaPars first performs de novo identification and quantification of dynamic APA events 
based on the two-poly(A)-site model introduced in DaPars. The bedGraph files for each 
single cell were used as input and jointly analyzed to calculate the APA usage 
measured as the Percentage of Distal poly(A) site Usage Index (PDUI). For each gene, 
the distal poly(A) site was identified as the end point of the longest 3’ UTR among all 
scRNA-seq samples, and the proximal poly(A) site was inferred by optimizing the 
following linear regression model: 
 
  
 
where 	�

� and 	�
� are the abundances of transcripts with distal and proximal poly(A) 

sites for cell 
, �� is the read coverage of cell 
 normalized by total sequencing depth, 
 
is the length of the longest 3’ UTR, � is the length of the alternative proximal 3’ UTR to 
be inferred, �� and �� are two indicator functions for long and short 3’ UTRs such that 

�� �  �1, � , 1�
  and �� �  �1, � , 1, 0, � ,0�    �,        
 � � . The optimal proximal poly(A) site is selected by 

minimizing the deviation between the observed read density �� and the expected read 
density 	�

��� � 	�
��� in all single cells. The APA usage is then quantified as PDUI for 

each gene in each single cell, with PDUI defined as: 
 

 
 
where 	�

�� and 	�
�� are the optimal expression levels of transcripts with distal and 

proximal poly(A) site for cell 
. The smaller the PDUI is, the less distal poly(A) site is 
used, the shorter the 3’ UTRs. The final output is a PDUI matrix in which rows represent 
genes and columns represent cells. Additionally, PDUIs can only be calculated in this 
step for genes with sufficient read coverage (default coverage of 5 reads per base), 
which automatically separate genes into robust genes and dropout genes for future 
analysis. On average, 50% of the genes in a cell are robust genes after quality control 
and if the dropout rate in the dataset is higher (e.g., in 10x Chromium datasets), the 
average number of robust genes in the data will decrease. There are overlaps between 
robust genes of different cells: in the benchmark dataset in Figure 2, the overlap of 
robust genes between any two cells is ~40%. 
 
Detection of potential neighboring cells and outliers 
Since APA exhibits alterations in different cell types and cell states in a global scale, 
scDaPars recovers missing single-cell level APA usage by borrowing APA information of 
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the same gene from neighboring cells. A critical step here is to determine which cells 
are from the same cell subpopulation and therefore are neighboring cells. Instead of 
using observed gene expression, scDaPars uses raw APA usage for this task because 
(1) APA is a feature intrinsic to cell types or cell states; (2) scDaPars quantifies APA 
usage independent of gene expression. We first performed a quantitative comparison of 
clustering using raw APA usage and observed gene expression from the hESC dataset 
in Figure 6 (Supplemental Fig.S17). We found that clustering of raw APA usage 
outperformed that of observed gene expression (Supplemental Fig.S17C, D) partly 
because differentiation is one of the biological processes with the most dramatic APA 
changes. To further illustrate the benefits of quantifying APA independent of gene 
expression, we modified our original scDaPars algorithm so that the initial clustering is 
performed using observed gene expression instead of raw APA usage and re-quantified 
the APA usage of cells from the hESC dataset in Figure 6. We found that the two 
subpopulations identified by original scDaPars were obscured by the modified version 
(Supplemental Fig.S18), indicating the advantage of quantifying APA independent of 
gene expression. 

Due to the technical limitation of scRNA-seq data, it is unlikely to completely 
cluster cells into true subpopulations based on the sparse PDUI matrix generated in last 
step. Instead, the goal of this step is to determine a set of potential neighboring cells 
which scDaPars will fine-tune in the following imputation step.  
 To increase the robustness and reliability of the clustering results and to find 
more plausible neighboring cells, scDaPars applies principal component analysis (PCA) 
to the raw PDUI matrix. While the PDUI matrix is sparse, the modularity of dynamic APA 
provides redundancy in gene dimensions, which can be exploited. Therefore, scDaPars 
selects principal components (PCs) that can together explain at least 40% of the 
variance in the data. Note that the neighboring cells are identified in these PCA 
dimensions while the imputation is performed on the full PDUI matrix.  
 

������� � ��������, 0.4�                     �3� 
 

Next, scDaPars identifies and removes outlier cells from the analysis. The outlier 
cells may be the result of technical errors or may represent true rare biological 
variations, in either case, scDaPars will not use these outlier cells to impute missing 
APA usage in other cells. We calculate the distance matrix �	
	 between cells based on 
the PCA transformed data �������. For each cell  , we define the Euclidean distance 

of cell   to its nearest neighbor as !�, resulting a set " �  #!�, � , !	$. We denote the 
first quantile of " as %� and its third quantile as %
 and the distance between %� and %
 
as interquartile range �%&. The outlier cells are defined as cells which are separated by 
more than 1.5 �%& to the third quantile %
.  
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 The remaining non-outlier cells #1, � , �$\'()*
+, are then clustered into 
subpopulations using graph-based community detection algorithm. The single cells are 
the vertices in the graph, and community detection in graphs will identify groups of 
vertices with high probability of being connected to each other than to members of other 
groups. We use R package RANN with default parameters to first identify the 
approximate nearest neighbors and convert neighbor relation matrix into an adjacency 
matrix. We then use igraph (Csardi and Nepusz 2006) to represent the resulting 
adjacency matrix as a graph and apply walkstrap (Pons and Latapy 2005) algorithm to 
identify communities of vertices (cells) that are densely connected. Suppose scDaPars 
divides cells into 1 subpopulations in this step, for each cell  , its potential neighboring 
cells �� are the other cells in the same cell subpopulation �.  

 
�� � #
 2 �, 
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Imputation of missing APA usage 
After potential neighboring cells �� for each cell are determined, we impute APA usage 
cell by cell. Recall that PDUIs can only be estimated for genes with sufficient read 
coverage, scDaPars thereby automatically separates genes into robust genes and 
dropout genes when calculating the PDUI matrix. Here, we denote the set of robust 
genes for cell   as &� and the set of dropout genes that will be imputed in this step as 
��. scDaPars then learns the cells’ similarities through the robust gene set 4������,� 
and impute the APA usage of �� by borrowing information from the same gene’s APA 
usage in other neighboring cells learned from &� . To fine-tune the grouping of 
neighboring cells from ��, we use non-negative least squares (NNLS) regression: 
 
 

 
where �� represents the indices of cells that are potential neighboring cells of cell  , 
��������������, � is a vector of response variables representing &� rows in the  -th 

column (cell  ) of the original PDUI matrix, ������, 	�
 is a sub-matrix of the original 

PDUI matrix with dimensions |&�| � |��|. The goal is to find the optimal coefficients 6�
7777 

of length |��| that can minimize the deviation between APA usage of &� in cell   and 
those in potential neighboring cells. The advantage of using NNLS is that it has the 
property of leading to a sparse estimate of 6�, whose components may have exact 
zeros, so that true neighboring cells of cell   are conveniently selected from ��. Once 
6�
7777 is computed, we have a vector of weighted neighbors associated with each cell in 
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our data. scDaPars use this coefficient 6�
7777 estimated from the set &� to impute the APA 

usage of genes in the set �� in cell  . All of the above analyses are conducted in R (R 
Core Team 2020). 
 

�����,�
77777777777 �  ; �����,�,                       if 8 2 &�

�����,	�
· 6�

7777,              if 8 2  ��

                �7�@ 
 
Differential percentage of distal APA usage index (PDUI) (Dynamic APA events) 
We used the following two criteria to define the significant dynamic APA events: first, 
given the PDUI values for cells in two cell types, the Benjamini-Hochberg corrected 
Mann-Whitney U p-value between two cell types (FDR) is less than 0.05; second, the 
absolute difference of mean PDUIs in cell type 1 and cell type 2 is greater than 0.2.  
 

A B�& C 0.05D�������� ���� � � �������� ���� �D  E 0.2                �8�@ 
 

 
Preprocessing of scRNA-seq data 
The scRNA-seq datasets used in this manuscript are all publicly available and are 
summarized in Supplemental Table S4. The 2 single-cell PBMC data are available at 
the Gene Expression Omnibus (GEO) under accession code GSE132044. The breast 
cancer data are available at GEO under accession code GSE75688. The time-course 
definitive endoderm data are available at GEO under accession code GSE75748. The 
lung adenocarcinoma cell line data are available at GEO under accession code 
GSE118767. The DICE immune data used to generate synthetic dataset were obtained 
from dbGaP under study accession code phs001703.v1.p1. For low-throughput 
datasets generated by Smart-seq2 (Picelli et al. 2013) protocol, we downloaded the 
publicly available FASTQ files from GEO database and aligned the reads using STAR 
2.5.2 (Dobin et al. 2013) with default parameters, generating one BAM file for each 
single cell. For high-throughput datasets generated by 10x Chromium (Zheng et al. 
2017), we downloaded the FASTQ files and aligned the reads using Cell Ranger 3.0.2. 
We then selected reads with correct unique molecular identifier (UMI) using Drop-seq 
tools FilterBAM (Macosko et al. 2015) and remove reads with duplicated UMIs using 
UMI-tools dedup (Smith et al. 2017). We next merged reads originated from same cells 
together and generated one BAM file for each single cell. The BAM files are used as 
inputs for subsequent scDaPars analysis. The average dropout rate (Percentage of 
missing data) for Smart-seq2 datasets is ~50% in our study. The 10x Chromium dataset 
in our study has a dropout rate of ~65%. 
 
Generation of synthetic dataset 
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The synthetic dataset was created based on bulk RNA-seq data generated from 13 
immune cell types (Schmiedel et al. 2018). The different immune cell types are isolated 
so that each sample only contains cells from one cell type. We used DaPars to estimate 
the APA usage in these bulk samples and generated an APA matrix, in which rows 
represent genes and columns represent samples. Since widespread dynamic APA 
events were reported in Naïve and activated CD4 T cells, we selected only samples that 
belong to these two cell types for the following simulation.  
 We down-sampled the resulting bulk APA matrix to emulate the APA profiles 
generated from single-cell data. We first calculated the dropout rate for each gene in the 
benchmark immune dataset (Ding et al. 2020). Next, for each gene in the bulk APA 
matrix, the dropout rate is randomly selected from the set of real dropout rates with 
replacement. Finally, we used Bernoulli distribution with p equals to the selected 
dropout rate and n equals to the number of samples to introduce dropouts into the 
synthetic dataset. The final dropout introduced data has a ~50% dropout rate which is 
similar to the dropout rate of real datasets. Notice that the generation of the synthetic 
dataset is independent from the models of scDaPars, so that it can be used to evaluate 
scDaPars in a fair way. 
 
Benchmark comparison of scDaPars 
To illustrate the advantage of scDaPars, we applied scDaPars, scAPA and Sierra to two 
benchmark 10x Chromium datasets. scAPA measures differential usage of poly(A) sites 
between different cell types by the proximal poly(A) site usage index (proximal PUI). 
Since we want to test scAPA’s ability for quantifying single-cell-level APA usage, we 
input single-cell coverage into scAPA to generate a cell by transcript proximal PUIs 
matrix to perform the clustering analysis. The Sierra pipeline does not yield PDUI like 
measurements. Instead, it generates a peak count matrix in which peak coordinates are 
annotated according to the genomic features they fall on including UTRs, exons, or 
introns. In order to calculate APA usage from the peak count matrix, we first selected 
peaks falling on the 3’ UTRs and only kept transcripts with more than one peak. We 
then transferred the peak count matrix into an APA matrix by calculating the relative 
usage of the most distal peak. The resulting APA matrix were used for the clustering 
analysis. Finally, we performed silhouette analysis by silhouette () in R package cluster 
v2.1.0. to quantitatively evaluate the clustering accuracy of the three methods.  
 

 
Software Availability 
 
The source codes and the R package scDaPars are available as Supplemental Code. 
scDaPars is also freely available at GitHub (https://github.com/YiPeng-Gao/scDaPars).  
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Figure Legends 
 
Figure 1. A schematic illustration of the scDaPars algorithm. 
(I) scDaPars predicts both distal and proximal poly(A) sites by joint analysis of all single-
cell samples and quantifies the raw relative APA usage by the proportion of estimated 
abundances of transcripts with distal poly(A) sites (long isoform). (II) scDaPars 
determines potential neighboring cells by applying community detection methods in 
APA profiles generated in step(I). (III) scDaPars uses NNLS regression model to refine 
neighboring cells and impute missing values by borrowing APA information from 
neighboring cells. 
 
Figure 2. Evaluation of APA detection accuracy of scDaPars using human PBMCs 
datasets. 
(A) Fraction of poly(A) sites predicted in matched bulk RNA-seq data recovered in 
single cells using scDaPars or random control. Poly(A) sites predicted in scRNA-seq are 
considered true if they are located within cutoff distance from the bulk results. The 
cutoffs range from 0 to 100bp with 10bp increment.  
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(B) Percentage of scDaPars predicted poly(A) sites or random control overlapped with 
annotated poly(A) sites from RefSeq, Ensembl, UCSC gene models and poly(A)_DB. 
The confidence interval was derived by taking random sites 10 times. 
(C) The top-scoring signal identified by de novo motif analysis (DREME) from the 
upstream (-100bp) of scDaPars predicted poly(A) sites from single cells.  
(D) Boxplot showing Pearson’s correlations between PDUI values of B-cell pairs 
estimated by DaPars and scDaPars (Wilcoxon test P < 2.2�10-16).  
(E) Scatter plots of PDUI values between average of all single cells and bulk results 
estimated by DaPars (left) and scDaPars (right). Red line represents the theoretical 
linear relationships between bulk and average of all single-cell PDUIs, and blue 
represents the actual linear relationships estimated from data. 
 
Figure 3. Evaluation of scDaPars in identifying dynamic APA events between two 
cell types using naive and activated CD4 T cells. 
(A) – (C) Scatterplots showing UMAP results of 54 naive CD4 T cells and 31 activated 
CD4 T cells based on (A) Reference APA profiles or (B) Dropout events introduced APA 
profiles or (C) scDaPars corrected APA profiles.  
(D) – (F) Heatmaps showing APA profiles of 136 differential APA genes (FDR <= 0.05 
and PDUI differences >= 0.2) in the (D) reference data (E) dropout events introduced 
data and (F) scDaPars corrected data. Rows represent differential APA genes and 
columns represent cells. 88 out of 136 differential APA genes have shorter 3’ UTRs in 
activated CD4 T cells in the reference data. 
 
Figure 4. scDaPars outperforms existing methods by quantifying APA usage in 
single-cell resolution.  
(A) – (C) Scatterplots showing UMAP results of 3362 PBMCs based on (A) scDaPars 
quantified APA usage or (B) scAPA quantified APA usage or (C) Sierra quantified APA 
usage. 
(D) – (F) Silhouette plots for clustering results from (D) scDaPars, (E) scAPA and (F) 
Sierra. The x-axis represents cells and y-axis is the corresponding silhouette coefficient 
Si for each cell. The silhouette coefficient measures how similar a cell is to its own 
cluster compared to other clusters, therefore a higher silhouette coefficient indicates a 
better clustering result and a negative coefficient may suggest the cell is assigned to the 
wrong cluster. The red dashed line is the average Si for all cells.  
 
Figure 5. scDaPars reveals tumor-specific and immune-cell-type specific APA 
landscape in primary breast cancer. 
(A) Scatter plot of PDUI values in Tumor and Normal cells. For each gene, the mean 
PDUI values in tumor cells (y-axis) are plotted against that in normal cells (x-axis). 
Genes with shortened or lengthened 3’ UTR (FDR <= 0.05 and PDUI difference >= 0.2) 
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in tumor cells are shown in red and blue. Bar plot shows the number of shortening 
genes or lengthening genes in tumor cells and p-value is calculated using single-tailed 
binomial test.  
(B) Scatter plot gives UMAP results calculated from scDaPars restored APA profiles. 
Each dot represents a cell, and cells are labeled based on cell index provided in the 
original publication. 
(C) Scatter plot of UMAP results of tumor cells. Cells are labeled by patient information.  
(D) Scatter plot of UMAP results of immune cells. Cells are labeled by cell type 
information.  
(E) Scatter plot of UMAP results of B cells based on scDaPars results.  
(F) Scatter plot of PDUI values in group 1 B cells and group 2 B cells. For each gene, 
the mean PDUI values in group 2 B cells (y-axis) are plotted against that in group 1 B 
cells (x-axis). Genes with shortened or lengthened 3’ UTR (FDR <= 0.05 and PDUI 
difference >= 0.2) in group 2 B cells are shown in red and blue. Bar plot shows the 
number of shortening genes or lengthening genes in group 2 cells. 
 
Figure 6. scDaPars helps identify novel cell subpopulations during human 
embryonic development. 
(A) Scatter plot shows UMAP results of single cells based on scDaPars recovered APA 
profiles. Cells are labeled based on cell differentiation time points given in the original 
publication.  
(B) Cell-by-cell similarities represented by similarity matrices generated by R package 
SNFtool. 
(C) Scatter plots of UMAP results of cells in 96h of differentiation based on scDaPars 
results (left) and imputed gene expression (right). Cells are labeled by results from (B).  
(D) Scatter plot shows mean PDUI values of genes in subpopulation 2 (x-axis) and sub- 
population 1 (y-axis). Genes with 3’ UTR shortening and lengthening (FDR <= 0.05 and 
PDUI differences >= 0.2) in subpopulation 2 are labeled in blue and red respectively. 
Bar plot shows the number of genes with shortening or lengthening in subpopulation 2 
and p-value is calculated using single-tailed binomial test.  
(E) Selected GO terms enriched in the upregulated genes in subpopulation 2.  
(F) Example gene expression levels in two subpopulations.  
(G) Stream plot from STREAM which shows cell density along different trajectories at a 
given pseudotime. 
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